
1338 

DIFFUSION OF GASES IN LIQUIDS. ll. * 
DISSOLUTION OF A STATIONARY GAS 
BUBBLE IN A LIQUID 

1.HANIKA, K.SPORKA and V.RUZICKA 

Deparlmenl of Organic Technology, 
IlIslilule of Chemical Technology, Prague 6 

Received September 2nd, 1969 

A new solution is given to the problem of the diffusion controlled dissolution of a gas bubble 
in a liquid , obtained by a finite difference method with an implicit computational scheme. It has 
been established that p . T* = 1·32 holds for p parameter from the interval p ~ 0·2. This result 
can be utilized for the calculation of the diffusion coefficient of a gas in a given liquid from the 
dissolution time of a bubble of a known initial size. A value D = 9·87 . 10 - 5 cmz Js (25°C. 1 atm), 
obtained in this manner for hydrogen-tetrachlormethane system, was compared with those, 
resulting from other methods of evaluation of time dependences of the bubble size. The obtained 
value of the diffusion coefficient for the mentioned system agrees very well with an earlier publi
shed value determined by an entirely different technique. 

The method of dissolution of a stationary gas bubble in a liquid with a uniform 
initial concentration of the dissolving gas has been used to determine the values 
of the diffusion coefficient for a number of systems l

-
13

. However, no standard routi
ne of evaluation of experimental data has thus far resulted from these works. The 
evaluation of the diffusion coefficient itself poses a problem of the solution of the 
following partial differential equation, given in dimensionless form with proper 
boundary conditions: 

(
aC(R, T)) = (aZC(R, T)) + ( aC(R, T)) [~ + AZ(T) (0: _ 1)f3 G(T)] , 

aT aRz aR R R Z 

A(O) = 1 ; C(R > A, 0) = 0 ; C(A, T) = 1; lim C(R, T) = 0 (1) 
R-+oo 

where 

Part I: This Journal 34,3145 (1969). 
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G = (aC~A~ T)) and dA = {JG. 
dT 

This set of equations (1) cannot be solved analytically. 
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A numerical solution for some values of parameters 0( and P was furnished in papers of Ready 
and Cooper14

, and Cable and Evans l5
. 

For pseudo-stationary case, the partial differential equation (1) can be transformed, together 
with the boundary conditions, into an ordinary differential equation of the form: 

dA/dT = - P{I/A -+- 1/(nT)1/2}, (2) 

A(O) = 1 . 

A complete solution of this equation was presented by Epstein and Plesset 16 and subsequently 
used lO for a nonlinear regression analysis of measured time dependences of the bubble size 
10 obtain values of the diffusion coefficient of the corresponding system. The discussed solution 
lakes following form in our notation: 

In [A 2 -I- 2PA(T/ n)1/2 -+- 2PT) - 2p/ Karctan {K/ [P + A(n/ T)1/2J} = 0 (3) 

where K = (2np _ p2)1/2. 

On neglecting .I/A or 1/(nT)1/2 term in equation (2), two limit solutions are obtained: 

A = 1 - 2p(T/ n)I /2 , (4) 

(5) 

The properties of the system studied, i.e. the diffusion coefficient and initial radius of the bubble 
ao , determine which of the Eqs (4) and (5) is to be used for analysis of the experimental data . 
A criterion for this selection is inequality 

l/A ~ 1/(nT)1/2 or (rcDI/a)1/2 ~ I . (6) 

Solution (5) has been applied in most papers dealing with the diffusion of slightly soluble 
gases in liquids l - 3 ,6 , 7,9 , l3,l6 . In all cited papers Eq. (5) agrees well with experimental de
pendences, primarily in the initial stage of the dissolution process when the interphase motion 
due to the loss of mass from the bubble is supposedly negligible. 

Hlavac and Nemecl7 compared still other theoretical time dependences of the bubble size 
at dissolution. They found large discrepancies between individual solutions as the curves dif
fered not only in their course but in their shape as well. From theoretical point of view particularly 
interesting is the work of Duda and Vrentas18 presenting an approximate solution to the dif
fusion equation (1) on the basis of perturbation analysis. The results of this approach were 
compared in the cited paper with authors' own solution by a finite difference method. 

The aim of this work is to present a new numerical solution of Eq. (1). The dif
fusion coefficient of hydrogen in tetrachloromethane, evaluated from experiments 
using this solution, is compared with its values furnished by other methods of evalua-
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tions applied to the same experimental data. The diffusion coefficients for our system 
are further compared with a value measured by Ross and Hildebrant 19 using an enti
rely different experimental method (diaphragm cell). Our own experimental set-up 
and measuring technique were described in detail in the preceding communication13. 

NUMERICAL SOLUTION OF THE DIFFUSION EQ. (1) 

Cable and Evans 15 have published a method of the solution of Eq. (1) in detail. 
Their results were presented in the form of the dependence of the dimensionless 
dissolution time T* on parameters CJ. and p. Unfortunately, this paper does not provide 
enough values of T* for low values of the coefficient p, typical for hydrogen-organic 
solvent systems (P ~ 0'2; CJ. = 0), to which we focussed our attention. This stimulated 
our attempt for our own solution of Eq. (1). In contrast with the work15 we used 
an implicit computational scheme. 

Let us denote the spatial increment !::.R, time increm~nt !::. T and C j ,i the concentra
tion at the point i and time T = j !::. T. Substituting R' = R - A, which has no effect 
on the increment !::.R, the origin of the computational grid is shifted into the point 
R = A for an arbitrary time instant. Since, however, the bubble size A is a function 
of time T, the implemented transform changes the time increment !::.T into !::.T' 
according to the relation: 

(7) 

This fact markedly complicates solution of pertaining difference equatiol!t as the 
gradient at the interphase is generally also a function of time. Considering that we seek 
a solution in the range of low values of the parameter p, i.e. for cases when the dis
solution of the bubble takes place sufficiently slowly, it is possible to take the original, 
untransformed time increment !::.T into computation instead of !::.T', provided that: 

(8) 

It is obvious that the dissolution times resulting on the basis of this assumption 
will be somewhat shorter than those, corresponding to Eq. (1). 

The computational check-up has shown the value of the square root in equation (7) 
smaner than 1·01 for p ~ 0·2. The differential operators in Eq. (1) can therefore be 
replaced by following difference relations20

-
22

: 

acjaT = (Ci ,i+l - Cdj!::.T, (9) 

acjaR == (Ci + 1 ,i+l - C i - 1,i+l + Ci+1,i - C i - 1 Jj4!::.R, (10) 
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In this way a following linear, tridiagonal set of equations with respect to C i •j + I is 
obtained: 

= (-2 + 2jQ)Ci .j + (I - Pi.j-I)Ci-I.J + (1 + Pi.j-I)Ci+l.j, (12) 

where {} = ATj(AR)2 

The concentration gradient at the interphase G j was replaced , in the set (I2), by the 
following three point approximation formula: 

(13) 

The set of difference equations (I2) was solved by an iteration procedure using 
a modified algorithm23. Whenever the concentration in the last point of the grid 
exceeded 10- 8

, the number of grid points, and consequently the number of equa
tions, was increased by one. Two iterations on average were necessary to achieve the 
relative error of the resultant gradient Gj + 1 less than 10- 4

. Further enhancement of 
the computational accuracy of the solution of the set (I2) had no appreciable effect 
on the calculated dissolution time T*. The computational scheme was completely 
stable for Q ~ 1. In the range 1 < Q ~ 20, the values of the gradient and concentra
tions in individual points oscillate at the beginning of the computation. This pheno
menon, however, has no effect on the dissolution time T*. The accuracy of the solu-

FIG. 1 

Dependence of Product PT- on Inverse 
of Radial Increment tlR 

op = 0'08, (JP = 0·2. 
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tion was examined for two different values of the coefficient f3 (f3 = 0·08 and f3 = 0·2) 
and for (J. = o. The computation was performed using different increments L'lR. It is 
apparent that diminishing increment will yield more accurate results. The appropriate 
time increment was determined from the quantity e, coupling both increments by abo
ve mentioned condition (for e > 20 solution of (12) diverges). 

Figure 1 plots the product of the dimensionless dissolution time T* and coefficient 
f3 in the dependence on the inverse of the increment L'lR. Figure shows clearly that with 
vanishing increment L'lR, the product f3T* does not depend practically on the coef
ficient f3, and its value, for L'lR -1 = 80, sufficiently approximates the limiting solu
tion for L'lR -+ 0 shown by broken line. The limiting value of the product f3T* = 

= 1·32349 for this case was obtained by extrapolation of the results using the La
grangian interpolation polynomial22

. 

RESULTS AND DISCUSSION 

Results of the Solution of Eq. (1) 

The results of the solution of partial differential equation (I) are shown in Fig. 2 
as a plot of the dependence of the inverse of the dimensionless time T* on the para
meter p. The dependence obtained by an implicit computational scheme is linear 

OetoftA 

1/T· 

. 0 

FIG. 2 

Dependence of Inverse of Dissolution Time 
of Bubble T* on Coefficient p 

1 Solution by Cable and Evans15
, 2 this 

work, 3 solution according to Eq. (3). 

FIG. 3 

Time Dependence of Bubble Size 
1 This work, 2 solution by Cable and 

Evans15 , 3 solution according to Eq. (3), 
4 solution by Duda and Vrentas18

. 
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in the examined region, which is in agreement with findings of Cable and Evans 15. The 
results of these authors (shown also in Fig. 2), however, do not display this property 
in the range f3 < 0·1, as can be seen from the detail in Fig. 2. In addition, the numeri
cal values of compared solutions do not agree either. Cable and Evans'15 results 
of the dissolution time T* are approximately one half of those, obtained in this work, 
while the presented solution is somewhat lower than the accurate solution with res
pect to the above introduced assumption about the transform. It is very difficult 
to assess the reason for this discrepancy. It may have been brought about by the ex
plicit computational scheme used in the work l 5, which is usually very sensitive 
to different instabilities of the solution, or due to the inaccuracy of the interpolation 
formula applied to the gas-liquid interphase. Interpolation was eliminated in this 
work by a suitable transform of coordinates at the interphase. 

Results presented in Fig. 2 cover the range of f3 parameter f3 E <0· J) , although 
for higher values of this parameter, the transform of the origin of coordinates used 
here is less justified (the value of the square root in Eq. (7) is 1·06 and 1·25 for f3 = 0· 5 
and f3 = 1 respectively). Nevertheless, the theoretical dissolution time in this case 
is substantially higher than that, given by Cable and Evansl5 . An analogous de
pendence for a pseudo-stationary case, obtained by the solution of the transcendent 
Eq. (3) with respect to T, for A = 0, is shown for comparison in the same figure. 
An elsewhere published24 algorithm was used to facilitate computation. 

Typical courses of time dependences of the size of the dissolving bubble, for f3 = 
= 0·05 and Q: = 0, are shown for illustration in Fig. 3. In addition to the above com
pared solutions, a solution according to Duda and Vrentas l8 , assuming the fastest 
dissolution of all thus far published papers, is plotted in the same figure. This brings 
up a question of whether additional terms should not be taken into consideration 
in the perturbation series of this work l8, and whether a suitable transform of co
ordinates was used in authors' own 18 numerical solution verifying the justification 
of the perturbation approach. 

Methods of Evaluation of the Diffussion Coefficient 

In experimental measurements of time dependences of the bubble size, the actual 
dissolution time is the most accurately measurable quantity. It seems therefore 
suitable to use this quantity for evaluation of the diffusion coefficient. Furthermore, 
the initial bubble size has to be known. In the case of a study of diffusion of gases 
in liquids, approximate solutions (e.g. Eq. (5) or (4)) can be made use of with advant
age to extrapolate experimental data to zero time, provided that the first experi
mental point is no too far from the beginning of the dissolution process. A new 
construction of the measuring cell, described in the preceding communication 13, 

enabled to cut this interval down to 10-15 s. 
If the condition of spherical symmetry of the concentration field around the bubble, 
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usually disturbed by the walls of the cell, is not fullfiled, an appropriate correction 
is necessary. The majority of authors uses a correction suggested by Liebermann3

• 

There is some uncertainty as to whether the driving force of the process, i.e. the 
coefficient P (P = p'lln 2), or, the resultant diffusion coefficient (D = D' lin 2) 
should be corrected. As the solution of the set (1) leads to a linear relation between 
the inverse of the dimensionless dissolution time and the coefficient p, both correc
tions necessitate the same result. Similar situation occurs in graphical evaluation 
of experiments according to Eq. (5), used by majority of authors. In contrast, a non
linear regression, according to Eq. (3), suggested by Krieger, Mulholland and Dic
keylO renders both corrections considerably different (see Table I). Program for a di
gital computer was prepared on the basis of a general minimizing algorithm used 
for complex kinetic data processing2 s. 

TABLE I 

Comparison of Diffusion Coefficients 

Method Solution 
CEq.) 

- --- --- --.------- ---

Method of evaluation Note 

-----------_._._--------

Diaphragm 9·75 see work l9 

Bubble dissolution (5) graphical 10·5 see work!3 

Bubble dissolution (I) this work frol11 bubble dissolution 9·87 
time '""-

Bubble dissolution (1) work l5 from bubble dissolution 4·75 
time 

Bubble dissolution (3) regression analysis 10·6 D = D'/In 2 
Bubble dissolution (3) regression ana lysis 5·36 p = p' /In 2 

The mean values of the diffusion coefficient of hydrogen in tetrachlormethane 
(25°C, 1 atm) obtained by different evaluation techniques and applied to the experi
mental data published in the preceding paper 13 , are summarized in Table I. The 
values of the diffusion coefficient determined by a method of diaphragm 19 are given 
there for comparison too. Large scatter of results due to the diversity of evaluation 
techniques is apparent from this survey. The value of the diffusion coefficient, ac
cording to the solution given here, comes closest to that, given by Ross and Hilde
brant19, while the diffusion coefficient obtained using Cable and Evans,ls solution 
is by one half lower. Relatively good result was achieved by a simple graphical techni
que according to Eq. (5), see preceding communication13

. 
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Further values of the diffusion coefficient for hydrogen-organic solvent systems 
will be presented in the following paper. 

The authors wish to thank 10 Dr V. Koza for his valliable assislance al Ihe SOllilioll of Eq. (I). 

LIST OF SYMBOLS 

c?" 
C'= C;/ct 
D 
D' 

G 
K 
P 

bubble radius (cm) 
initial bubble radius (I = 0) (COl) 

dimensionless bubble radius 
dimensionless concentration at the point i. j 
concentration at interphase (g COl - 3) 
initial concentration in liquid (g cm - 3) 
dimensionless concentration 
diffusion coefficient (cm 2 s -1) 

uncorrected diffusion coefficient affected by walls of cell (cm 2 s -1) 

concentration gradient (see Eq. (1» 
dimensionless coefficient of Eq. (3) 
dimensionless coefficient of Eq. (/2) 
radial coordinate (cm) 

f1R dimensionless radial increment 
R = r/ao dimensionless radial coordinate 
R' = R - A dimensionless radial coordinate 

time (5) 

1* dissolution time of bubble (s) 
f1T dimensionless time increment 
T = Dt/a'6 dimensionless time 
~. = Dt*/a'6 dimensionless dissolution time of bubble 
Vi partial specific volume of component i (cm 3 g - 1) 

IX = On Vi dimensionless coefficient 
P = (ct - Ci)!QB(1 - ctvi ) dimensionless coefficient 
P' dimensionless coefficient affected by walls of cell 

dimensionless coefficient of Eq. (12) 
Os density of gas in bubble (g COl - 3) 
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